sNucDrop-Seq: Dissecting cell-type composition and neuronal activity state in mammalian brains by massively parallel single-nucleus RNA-Seq

2017 
Massively parallel single-cell RNA sequencing can precisely resolve cellular diversity in a high-throughput manner at low cost, but unbiased isolation of intact single cells from complex tissues, such as adult mammalian brains, is challenging. Here, we integrate sucrose-gradient assisted nuclear purification with droplet microfluidics to develop a highly scalable single-nucleus RNA-Seq approach (sNucDrop-Seq), which is free of enzymatic dissociation and nucleus sorting. By profiling ~11,000 nuclei isolated from adult mouse cerebral cortex, we demonstrate that sNucDrop-Seq not only accurately reveals neuronal and non-neuronal subtype composition with high sensitivity, but also enables analysis of long non-coding RNAs and transient states such as neuronal activity-dependent transcription at single-cell resolution in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []