Fused Porphyrin–Single-Walled Carbon Nanotube Hybrids: Efficient Formation and Photophysical Characterization

2013 
A systematic study of the interaction between π-extended porphyrins and single-walled carbon nanotubes (SWNTs) is reported here. Zinc porphyrins with 1-pyrenyl groups in the 5,15-meso positions, 1, as well as compounds where one or both of the pyrene groups have been fused at the meso and β positions of the porphyrin core, 2 and 3, respectively, have been examined. The strongest binding to SWNTs is observed for porphyrin 3, leading to debundling of the nanotubes and formation of stable suspensions of 3–SWNT hybrids in a range of common organic solvents. Absorption spectra of 3–SWNT suspensions are broad and continuous (λ = 400–1400 nm), and the Q-band of 3 displays a significant bathochromic shift of 33 nm. The surface coverage of the SWNTs in the nanohybrids was estimated by spectroscopic and analytical methods and found to reach 64% for (7,6) nanotubes. The size and shape of π-conjugated porphyrins were found to be important factors in determining the strength of the π–π interactions, as the linear anti...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    55
    Citations
    NaN
    KQI
    []