Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste

2017 
Abstract Microwave hydrothermal carbonization (M-HTC) is reported in this study as a viable sanitation technology that can reliably overcome the heterogeneous nature of human faecal biowaste (HBW) and realize its intrinsic energy value. Solid chars produced from the M-HTC process at 180 °C and 200 °C were characterized to further the understanding of the conversion pathways and their physicochemical, structural and energetic properties. The study revealed solid chars recovered were predominantly via a solid-solid conversion pathway. In terms of yield, more than 50% of solid chars (dry basis) can be recovered using 180 °C as a benchmark. Additionally, the carbonized solid chars demonstrated enhanced carbon and energy properties following the M-HTC process: when compared to unprocessed HBW, the carbon content in the solid chars increased by up to 52%, while the carbon densification factor was greater than 1 in all recovered chars. The calorific values of the chars increased by up to 41.5%, yielding heating values that averaged 25 MJ kg −1 . Thermogravimetric studies further revealed the solid fuel chars exhibited greater reactivity when compared with unprocessed HBW, due to improved porosity. This work strengthens the potential of the M-HTC sanitation technology for mitigating poor sanitation impacts while also recovering energy, which can complement domestic energy demands.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    81
    References
    40
    Citations
    NaN
    KQI
    []