Conformational behavior of D-lyxose in gas and solution phases by rotational and NMR spectroscopies

2019 
Understanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated β-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    6
    Citations
    NaN
    KQI
    []