Dual-beam intracavity optical trap with all-optical independent axial and radial self-feedback schemes.

2021 
Recently single-beam intracavity optical tweezers have been reported and achieved orders-of-magnitude higher confinement than standard optical tweezers. However, there is only one feedback loop between the trapped particle's three-dimensional position and the scattering loss of the intracavity laser. That leads to the coupling effect between the particle's radial and axial motion, and aggravates the axial confinement efficiency. Here, we present and demonstrate the dual-beam intracavity optical trap enabling independent radial and axial self-feedback control of the trapped particle, through offsetting the foci of the clockwise and counter-clockwise beams. We have achieved the axial confinement efficiency of 1.6*10^(-4) mW^(-1) experimentally at very low numerical aperture (NA=0.25), which is the highest axial confinement efficiency of the optical trap to date, to the best of our knowledge. The dual-beam intracavity optical trap will significantly expand the range of applications in the further studies of biology and physics, especially for a sample that is extremely sensitive to heat.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []