Pressure-induced Pb–Pb bonding and phase transition in Pb2SnO4

2020 
High-pressure single-crystal to 20 GPa and powder diffraction measurements to 50 GPa, show that the structure of Pb2SnO4 strongly distorts on compression with an elongation of one axis. A structural phase transition occurs between 10 GPa and 12 GPa, with a change of space group from Pbam to Pnam. The resistivity decreases by more than six orders of magnitude when pressure is increased from ambient conditions to 50 GPa. This insulator-to-semiconductor transition is accompanied by a reversible appearance change from transparent to opaque. Density functional theory-based calculations show that at ambient conditions the channels in the structure host the stereochemically-active Pb 6s2 lone electron pairs. On compression the lone electron pairs form bonds between Pb2+ ions. Also provided is an assignment of irreducible representations to the experimentally observed Raman bands.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    1
    Citations
    NaN
    KQI
    []