Forced Convection Heat Transfer in Porous Structure: Effect of Morphology on Pressure Drop and Heat Transfer Coefficient

2021 
A light-weight structure with sufficient mechanical strength and heat transfer performance is increasingly required for some thermal management issues. The porous structure with the skeleton supporting the ambient stress and the pores holding the flowing fluid is considered very promising, attracting significant scientific and industrial interest over the past few decades. However, due to complicated morphology of the porous matrices and thereby various performance of the pressure drop and heat transfer coefficients (HTC), the comprehensive comparison and evaluation between different structures are largely unclear. In this work, recent researches on the efforts of forced convection heat transfer in light-weight porous structure are reviewed; special interest is placed in the open-cell foam, lattice-frame, structured packed bed, and wire-woven structures. Their experimental apparatus, morphological of the porous structures, effect of morphology on pressure drop and HTC, and further applications are discussed. The new method which measure morphology accurately should be paid more attention to develop more accuracy correlation. Also, the most research focused on low Reynolds number and existing structure, while very few researchers investigated the property of forced convection heat transfer in high velocity region and developed new porous structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    175
    References
    0
    Citations
    NaN
    KQI
    []