Thermodynamic Discrimination Between Energy Sources for Chemical Reactions

2020 
Chemical transformations traverse large energy differences, yet the choice of energy source to drive a chemical reaction is often decided on a case-by-case basis; there is no fundamentally-driven, universal framework with which to analyze and compare the choice of energy source for chemical reactions. In this work, we present a reaction-independent expression for the equilibrium constant as a function of temperature, pressure, and voltage. With a specific set of axes, all reactions can be represented by a single (x,y) point and a quantitative divide between electrochemically and thermochemically driven reactions is visually evident. In addition, we show that our expression has a strong physical basis in work and energy fluxes to the system, although more specific data about reaction operation is necessary to provide a quantitative energy analysis. Overall, this universal equation and facile visualization of chemical reactions enables quick and informed justification for electrochemical versus thermochemical energy sources without knowledge of detailed process parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []