Investigation of superior longitudinal fasciculus fiber complexity in recent onset psychosis

2018 
Abstract Background Standard diffusion tensor imaging measures (e.g., fractional anisotropy; FA) are difficult to interpret in brain regions with crossing white-matter (WM) fibers. Diffusion spectrum imaging (DSI) can be used to resolve fiber crossing, but has been difficult to implement in studies of patients with psychosis given long scan times. Methods We used four fold accelerated compressed sensing to accelerate DSI acquisition to investigate the superior longitudinal fasciculus (SLF) in 27 (20M/7F) patients with recent onset psychosis and 23 (11M/12F) healthy volunteers. Dependent measures included the number of crossing fiber directions, multi directional anisotropy (MDA), which is a measure sensitive to the anisotropy of the underlying water diffusion in regions of crossing fibers, generalized FA (GFA) computed from the orientation distribution function, FA and tract volume. Results Patients demonstrated a greater number of crossing WM fibers, lower MDA, GFA and FA in the left SLF compared to healthy volunteers. Patients also demonstrated a reversal in the normal (R > L) asymmetry of crossing fiber directions in the SLF and a lack of normal (L > R) asymmetry in MDA, GFA and FA compared to healthy volunteers. Lower GFA correlated significantly (p  Conclusions Our findings provide the first in vivo evidence for abnormal crossing fibers within the SLF among individuals with psychosis and their functional correlates. A reversal in the normal pattern of WM asymmetry of crossing fibers in patients may be consistent with an aberrant neurodevelopmental process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    7
    Citations
    NaN
    KQI
    []