Use of the hypercube for symbolic quantum chromodynamics

1989 
A new numerical approach by Furmanski and Kolawa to quantum chromodynamics is based on diagonalizing the underlying Hamiltonian. This method involves the generation of states by repeated action of a potential operator. This symbolic calculation is dominated by the time it takes to search the database of existing states to verify if a generated state is identical to one previously found. We implement this algorithm on the Caltech/JPL Mark II hypercube and analyze its performance of both a simple database search and one optimized for this application. We show that the hypercube performance can be modelled in a fashion similar to conventional numerical (loosely synchronous) applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    1
    Citations
    NaN
    KQI
    []