The effects of atomoxetine and methylphenidate on the prepulse inhibition of the acoustic startle response in mice.

2014 
Abstract Atomoxetine (ATM) and methylphenidate (MPD) have been used for the treatment of attention deficit hyperactivity disorder (ADHD). ATM is a selective norepinephrine reuptake inhibitor, whereas MPD is a psychostimulant and acts as a norepinephrine and dopamine reuptake inhibitor. In the present study, we investigated the effects of ATM (1, 3 or 10 mg/kg) and MPD (5, 10 or 20 mg/kg) on pharmacological mouse models of sensorimotor gating measured by prepulse inhibition (PPI) using the acoustic startle response test. MK-801, a non-competitive N -methyl -d -aspartate receptor antagonist, or apomorphine, a non-competitive dopamine receptor agonist, was used to induce PPI deficits. ATM (3 or 10 mg/kg, s.c.) significantly attenuated the MK-801-, but not apomorphine-, induced PPI deficits. In contrast to ATM, MPD did not reverse the PPI deficits induced by either MK-801 or apomorphine. Immunostaining revealed that the number of c-Fos-immunopositive cells was increased in the nucleus accumbens following MK-801 treatment, and this was reversed by the administration of ATM (3 mg/kg), but not MPD (10 mg/kg). However, neither ATM nor MPD reversed the increased number of c-Fos-immunopositive cells in the nucleus accumbens following apomorphine treatment. These results suggest that the attenuating effect of ATM on the increased c-Fos immunoreactivity in the nucleus accumbens induced by MK-801 may be attributed to the PPI deficit-ameliorating effects of ATM and that ATM would be useful to treat sensorimotor gating-related disorders by improving the patient's attention span or cognitive function.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    2
    Citations
    NaN
    KQI
    []