Discrimination of ablation, shielding, and interface layer effects on the steady-state formation of persistent bubbles under liquid flow conditions during laser synthesis of colloids

2021 
Over the past decade, laser ablation in liquids (LAL) was established as an innovative nanoparticle synthesis method obeying the principles of green chemistry. While one of the main advantages of this method is the absence of stabilizers leading to nanoparticles with “clean” ligand-free surfaces, its main disadvantage is the comparably low nanoparticle production efficiency dampening the sustainability of the method and preventing the use of laser-synthesized nanoparticles in applications that require high amounts of material. In this study, the effects of productivity-dampening entities that become particularly relevant for LAL with high repetition rate lasers, i.e., persistent bubbles or colloidal nanoparticles (NPs), on the synthesis of colloidal gold nanoparticles in different solvents are studied. Especially under batch ablation conditions in highly viscous liquids with prolonged ablation times both shielding entities are closely interconnected and need to be disentangled. By performing liquid flow-assisted nanosecond laser ablation of gold in liquids with different viscosity and nanoparticle or bubble diffusivity, it is shown that a steady-state is reached after a few seconds with fixed individual contributions of bubble- and colloid-induced shielding effects. By analyzing dimensionless numbers (i.e., Axial Peclet, Reynolds, and Schmidt) it is demonstrated how these shielding effects strongly depend on the liquid’s transport properties and the flow-induced formation of an interface layer along the target surface. In highly viscous liquids, the transport of NPs and persistent bubbles within this interface layer is strongly diffusion-controlled. This diffusion-limitation not only affects the agglomeration of the NPs but also leads to high local densities of NPs and bubbles near the target surface, shielding up to 80% of the laser power. Hence, the ablation rate does not only depend on the total amount of shielding matter in the flow channel, but also on the location of the persistent bubbles and NPs. By comparing LAL in different liquids, it is demonstrated that 30 times more gas is produced per ablated amount of substance in acetone and ethylene glycol compared to ablation in water. This finding confirms that chemical effects contribute to the liquid’s decomposition and the ablation yield as well. Furthermore, it is shown that the highest ablation efficiencies and monodisperse qualities are achieved in liquids with the lowest viscosities and gas formation rates at the highest volumetric flow rates.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    116
    References
    0
    Citations
    NaN
    KQI
    []