Mediating Reductive Charge Shift Reactions in Electron Transport Chains

2017 
We report the synthesis of a full-fledged family of covalent electron donor–acceptor1–acceptor2 conjugates and their charge-transfer characterization by means of advanced photophysical assays. By virtue of variable excited state energies and electron donor strengths, either Zn(II)Porphyrins or Zn(II)Phthalocyanines were linked to different electron-transport chains featuring pairs of electron accepting fullerenes, that is, C60 and C70. In this way, a fine-tuned redox gradient is established to power a unidirectional, long-range charge transport from the excited-state electron donor via a transient C60•– toward C70•–. This strategy helps minimize energy losses in the reductive, short-range charge shift from C60 to C70. At the forefront of our investigations are excited-state dynamics deduced from femtosecond transient absorption spectroscopic measurements and subsequent computational deconvolution of the transient absorption spectra. These provide evidence for cascades of short-range charge-transfer proces...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    27
    Citations
    NaN
    KQI
    []