A three-beam aerosol backscatter correlation lidar for three-component wind profiling

2014 
In this paper, we describe the development of a three-beam elastic lidar that utilizes aerosol backscatter correlation to measure three-component wind profiles for detecting and tracking aircraft wake vortices; turbulence intensity and wind shear profiles. High-resolution time-resolved wind information can currently be obtained with ultrasonic or hot-wire anemometers suitable for local point measurements, or with Doppler wind lidars that only measure line-of-sight wind speeds and have to be scanned over large measurement cone angles for obtaining three-component winds. By tracking the motion of aerosol structures along and between three near-parallel laser beams, our lidar obtains three-component wind speed profiles along the field of view (FOV) of the lidar beams. Our prototype lidar wind profiler (LWP) has three 8-inch transceiver modules placed in a near-parallel configuration on a two-axis pan-tilt scanner to measure winds up to 2km away. Passively q-switched near-infrared (1030nm) Yb:YAG lasers generate 12 - 18ns wide pulses at high repetition rate (about 10KHz) that are expanded and attenuated to eye-safe levels. Sensitive low noise detection is achieved even in daytime using a narrow FOV receiver, together with narrowband interference filters and single photoncounting Geiger-mode Si detectors. A multi-channel scaler retrieves the lidar return with 7.8ns bins (∼1.2m spatial resolution) and stores accumulated counts once every 50ms (20 profiles/sec). We adapted optical flow algorithms to obtain the movement of aerosol structures between the beams. The performance of our prototype LWP was validated using sonic anemometer measurements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    1
    Citations
    NaN
    KQI
    []