Investigations on a Multiple Mask Technique to Depress Processing-Induced Damage of ICP-Etched HgCdTe Trenches

2013 
A multiple mask technique, integrating patterned silicon dioxide (SiO2) film over patterned thick photoresist (PR) film, has been investigated as a method to perform mesa etching for device delineation and electrical isolation of mercury cadmium telluride (HgCdTe) third-generation infrared focal-plane arrays. The multiple mask technique was achieved by standard thick PR photolithography, SiO2 film deposition to cover the thick PR patterned film, and etching the SiO2 film at the bottom region after another photolithography process. The dynamic resistance in the zero-bias and low-reverse-bias regions of HgCdTe photodiode arrays isolated by inductively coupled plasma (ICP) etching with the multiple mask of patterned SiO2 and patterned thick PR film underneath was improved one- to twofold compared with a simple mask of patterned SiO2. It is suggested that the multiple mask technique is capable of maintaining high etching selectivity while reducing the side-wall processing-induced damage of ICP-etched HgCdTe trenches. The results show that the multiple mask technique is readily available and shows great promise for etching HgCdTe mesa arrays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    5
    Citations
    NaN
    KQI
    []