Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation

2021 
Taking advantage of the unique layered structure of TiSe2, the intrinsic electronic properties of two-dimensional materials can easily be tuned via heteroatomic engineering. Herein, we show that the charge density wave (CDW) phase in 1T-TiSe2 single-crystals can be gradually suppressed through Sn atoms intercalation. Using angle-resolved photoemission spectroscopy (ARPES) and temperature-dependent resistivity measurements, this work reveals that Sn atoms can induce charge doping and modulate the intrinsic electronic properties in the host 1T-TiSe2. Notably, our temperature-dependent ARPES results highlight the role exciton-phonon interaction and the Jahn-Teller mechanism through the formation of backfolded bands and exhibition of a downward Se shift of 4p valence band in the formation of CDW in this material.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []