Prediction of the stability and electronic properties of carbon nanotori synthesized by a high-voltage pulsed discharge in ethanol vapor

2016 
An experimental technique for increasing the yield of carbon-nanotube nanotori using the modified arc synthesis method is proposed. New physical knowledge on the systematic features of the interrelation between the properties of nanotori and atomic-network topology are theoretically established for the first time. The experiments are performed based on new technology for synthesizing nanotori on nickel-catalyst particles by a high-voltage pulsed discharge in ethanol vapor and using atomic-force microscopy. Stability is predicted using an original procedure for calculating local atomic stresses. Simulation shows that the zigzag chirality corresponds to the most stable topology of nanotori. Using the tight binding method, it is shown that, depending on the chirality type, nanotori are divided into two classes, i.e., those with metal and semiconductor conductivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    3
    Citations
    NaN
    KQI
    []