language-icon Old Web
English
Sign In

AESOP: the 4MOST fiber positioner

2018 
The Australian Astronomical Observatory’s (AAO’s) AESOP project is part of the 4 metre Multi-Object Spectrograph Telescope (4MOST) system for the VISTA telescope. It includes the 2436-fiber positioner, space frame and electronics enclosures. The AESOP concept and the role of the AAO in the 4MOST project have been described in previous SPIE proceedings. Prototype tests, which were completed early in 2017 demonstrated that the instrument requirements are satisfied by the design. The project final design stage has recently been completed. In this paper, key features of the AESOP positioning system design, along with the techniques developed to overcome key mechanical, electronic, and software engineering challenges are described. The major performance requirement for AESOP is that all 2436 science fiber cores and 12 guide fiber bundles are to be re-positioned to an accuracy of 10 µm within 1 minute. With a fast prime-focus focal-ratio, a close tolerance on the axial position of the fiber tips must be held so efficiency does not suffer from de-focus losses. Positioning accuracy is controlled with the metrology cameras installed on the telescope, which measures the positions of the fiber tips to an accuracy of a few µm and allows iterative positioning until all fiber tips are within tolerance. Maintaining co-planarity of the fiber tips requires accurate control in the assembly of several components that contribute to such errors. Assembly jigs have been developed and proven adequate for this purpose. Attaining high reliability in an assembly with many small components of disparate materials bonded together, including piezo ceramics, carbon fiber reinforced plastic, hardened steel, and electrical circuit boards, has entailed careful selection and application of cements and tightly controlled soldering for electrical connections.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []