Boundedness and stabilization of solutions to a chemotaxis May–Nowak model

2021 
The chemotaxis May–Nowak model $$\begin{aligned} \left\{ \begin{array}{llll} u_t=D_u \Delta u-\nabla \cdot (uf\left( u\right) \nabla v)-g\left( u\right) w+r-u, &{}x\in \Omega ,\quad t>0,\\ v_t=D_v \Delta v+g\left( u\right) w-v, &{}x\in \Omega ,\quad t>0,\\ w_t=D_w \Delta w+v-w, &{}x\in \Omega ,\quad t>0, \end{array} \right. \end{aligned}$$ is considered in a bounded domain $$\Omega \subset \mathbb {R}^n (n\ge 1)$$ with homogeneous Neumann boundary conditions and the parameters $$D_u,D_v,D_w,r>0$$ . The chemotactic sensitivity function and the conversion function are given by $$f\left( s\right) =K_{f}\left( 1+s\right) ^{-\alpha }$$ and $$g(s) = K_{g} s^{\beta }$$ for all $$s > 0$$ , respectively, where $$K_{f}\in \mathbb {R}$$ , $$K_{g}, \alpha , \beta >0$$ . The global boundedness of solution is shown if the following case holds: $$\begin{aligned} \begin{aligned} \alpha > \max \left\{ \frac{n\beta }{4}, \frac{\beta }{2}, \frac{n(n+2)}{6n+8}\beta +\frac{1}{2} \right\} . \end{aligned} \end{aligned}$$ Moreover, for the large time behavior of the global smooth bounded solution, the basic reproduction number $$R_{0}:=K_{g}r^{\beta }$$ has an important effect (Lai and Zou in Bull Math Biol 76:2806-2833, 2014; Wang et al. in Nonlinear Anal RWA 33:253-283, 2017), and system has the infection-free steady state if $$01$$ (Korobeinikov in Bull Math Biol 66:879-883, 2004). By constructing an appropriate energy function, under the conditions that $$K_f$$ and $$K_g$$ are appropriately mild, it is shown that: $$\bullet $$ If $$R_0\in (0,1)$$ , then any global bounded solution converges to $$\left( r, 0, 0\right) $$ as $$t\rightarrow \infty $$ ; $$\bullet $$ If $$R_0\in (1,\infty )$$ , $$\beta =1$$ , then any global bounded solution converges to $$\bigg ( \frac{1}{K_g}, r-\frac{1}{K_g}, r-\frac{1}{K_g} \bigg )$$ as $$t\rightarrow \infty $$ .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []