A tool development of rigorous Schrödinger/Luttinger based Monte Carlo codes for scaled MOS studies in terms of crystal orientation, channel direction, mechanical stress and applied voltage

2006 
In order to study scaled devices in the 40 nm regime and beyond, it is necessary to use rigorously theoretical and physical-based TCAD tools instead of empirically or phenomenologically calibrated approaches, otherwise full development and understanding of the devices will be retarded. In view of this situation, the author has developed a prototype rigorous Schrodinger/Luttinger based Monte Carlo tool for scaled MOS device designing in terms of crystal orientation, channel direction, mechanical stress and applied voltage, while also emphasizing flexibility for device modification and reliable prediction. In this paper, detailed mathematical derivations are presented and distinctive p-channel MOS inversion characteristics for Si, SiGe, and Ge are demonstrated. Moreover, experimental results for model verifications are presented
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    0
    Citations
    NaN
    KQI
    []