Regulation of Adipocyte Differentiation by Distinct Subcellular Pools of Protein Kinase B (PKB/Akt)

2010 
The phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB)/Akt-PTEN signal transduction pathway orchestrates a variety of fundamental cell processes and its deregulation is implicated in many human diseases. Although the importance of this pathway to many cellular functions is well established, the mechanisms by which it achieves context-specific physiological outcomes in response to a variety of stimuli, using a relatively limited pool of effectors, remain largely unknown. Spatial restriction of signaling events is one means by which cells coordinate specific responses using common molecules. To investigate the subcellular location-specific roles of the major PI3K effector PKB/Akt in various cell processes, we have developed a novel experimental system employing cellular compartment-directed PKB/Akt pseudosubstrate inhibitors. Subcellular location-restricted PKB/Akt inhibition in the 3T3L1 adipocyte differentiation model revealed that nuclear and plasma membrane, but not cytoplasmic, PKB/Akt activity is required for terminal adipocyte differentiation. Nuclear and plasma membrane pools of PKB/Akt were found to contribute to distinct stages of adipocyte differentiation, revealing that PKB/Akt activity impacts multiple points of this program. Our work establishes the use of localized pseudosubstrate PKB/Akt inhibitors as an effective method for the dissection of PKB/Akt signaling.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    19
    Citations
    NaN
    KQI
    []