Estimation of the carbon pool in soil and above-ground biomass within mangrove forests in Southeast Mexico using allometric equations

2014 
We report the results of carbon stored in soil and aboveground biomass from the most important area of mangroves in Mexico, with dominant vegetation of Red mangrove (Rhizophora mangle L.), Black mangrove (Avicennia germinans L.), white mangrove (Laguncularia racemosa Gaertn.) and button mangrove (Conocarpus erectus L.). We sampled soils with high fertility during the dry season in 2009 and 2010 at three sites on Atasta Peninsula, Campeche. We used allometric equations to estimate above ground biomass (AGB) of trees. AGB was higher in C. erectus (253.18±32.17 t·ha−1), lower in A. germinans (161.93±12.63 t·ha−1), and intermediate in R. mangle (181.70±16.58 t·ha−1) and L. racemosa (206.07±19.12 t·ha−1). Of the three studied sites, the highest absolute value for AGB was 279.72 t·ha−1 in button mangrove forest at any single site. Carbon stored in soil at the three sites ranged from 36.80±10.27 to 235.77±66.11 t·ha−1. The Tukey test (p <0.05) made for AGB was higher for black mangrove showed significant differences in soil carbon content between black mangrove and button mangrove. C. erectus had higher AGB compared with the other species. A. germinans trees had lower AGB because they grew in hypersaline environments, which reduced their development. C. erectus grew on higher ground where soils were richer in nutrients. AGB tended to be low in areas near the sea and increased with distance from the coast. A. germinans usually grew on recently deposited sediments. We assumed that all sites have the same potential to store carbon in soil, and then we found that there were no significant differences in carbon content between the three samples sites: all sites had potential to store carbon for long periods. Carbon storage at the three sampling sites in the state of Campeche, Mexico, was higher than that reported for other locations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    13
    Citations
    NaN
    KQI
    []