A novel electroplex host with dual triplet exciton up-converting channels suppressing triplet exciton induced degradation mechanisms in blue organic light-emitting diodes

2021 
A novel electroplex host with two triplet exciton up-converting channels for suppressed triplet exciton triggered degradation mechanisms was developed using an electron transport type host (n-type host) with thermally activated delayed fluorescence (TADF) characteristics to improve the device lifetime of deep blue phosphorescent organic light-emitting diodes (PhOLEDs). The TADF-natured n-type host with high triplet energy was derived from triazine with benzonitrile and carbazole units to induce the TADF characteristics. The TADF natured n-type host generated electroplex with a hole transport type host and the electroplex-based PhOLEDs revealed an extended device lifetime by more than twice compared to the non-TADF natured n-type host based electroplex host. Transient photoluminescence and electroluminescence analysis revealed that two reverse intersystem crossing (RISC) mechanisms through the n-type TADF host and electroplex host could suppress triplet exciton related degradation and improved the device lifetime. Kinetics modeling of the electroplex supported the RISC mechanisms of the electroplex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []