Dose-dependent effects of necrostatin-1 supplementation to tissue culture media of young porcine islets.

2020 
Previous studies have shown that necrostatin-1 (Nec-1) supplementation improved the viability of murine islets following exposure to nitric oxide, increased the survival of human islets during hypoxic culture, and augmented the maturation of pre-weaned porcine islets (PPIs) after 7 days of tissue culture. A limitation of these studies is that only one concentration of Nec-1 was used, and no studies have determined the optimal dose of Nec-1 for PPIs. Thus, the present study examined the effects of Nec-1 on PPIs at four different doses—0, 25, 50, 100, and 200 μM—after 7 days of tissue culture when supplemented on day 3. PPIs were isolated from pancreata of pre-weaned Yorkshire piglets (8–15 days old) and cultured in a specific islet maturation media added with Nec-1 on day 3 of tissue culture at 4 different doses—0, 25, 50, 100, and 200 μM (n = 6 for each dose). After 7 days of tissue culture, islets were assessed for recovery, viability, endocrine cellular content, GLUT2 expression in beta cells, and insulin secretion after glucose challenge. Nec-1 did not affect the viability of both intact islets and dissociated islets cells during tissue culture regardless of doses. Islets cultured in media supplemented with Nec-1 at 100 μM, but not 25, 50, or 200 μM, had a significantly higher recovery, composition of endocrine cells, GLUT2 expression in beta cells, and insulin secretion capacity than control islets cultured in media without Nec-1 supplementation. Moreover, culturing islets in 200 μM Nec-1 supplemented media not only failed to improve the insulin release but resulted in a lower glucose-induced insulin stimulation index compared to islets cultured in media added with 100 μM Nec-1. Xenotransplantation using porcine islets continues to demonstrate scientific advances to justify this area of research. Our findings indicate that Nec-1 supplementation at 100 μM was most effective to enhance the in vitro maturation of PPIs during tissue culture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    3
    Citations
    NaN
    KQI
    []