MiR-20b Down-Regulates Intestinal Ferroportin Expression In Vitro and In Vivo

2019 
Ferroportin (FPN) is the only known cellular iron exporter in mammalian. However, post-transcriptional regulation of intestinal FPN has not yet been completely understood. In this study, bioinformatics algorithms (TargetScan, PicTar, PITA, and miRanda) were applied to predict, screen and obtain microRNA-17 family members (miR-17, miR-20a, miR-20b, and miR-106a) targeting FPN, ‘seed sequence’ and responding binding sites on the 3′untranslated region (3′UTR) region of FPN. Dual-luciferase reporter assays revealed miRNA-17 family members’ mimics decreased the luciferase activity, whereas their inhibitors increased the luciferase activity. Compared with the FPN 3′UTR wild type reporter, co-transfection of a miRNA-17 family members’ over-expression plasmids and FPN 3′UTR mutant reporters enhanced the luciferase activity in HCT116 cells. Transfection with miR-20b overexpression plasmid significantly enhanced its expression, and it inhibited endogenous FPN protein expression in Caco-2 cells. Additionally, tail-vein injection of miR-20b resulted in increasing duodenal miR-20b expression, decreasing duodenal FPN protein expression, which was closely related to lower plasma iron level in mice. Taken together, these data suggest that the miR-20b is identified to regulate intestinal FPN expression in vitro and in vivo, which will provide a potential target for intestinal iron exportation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    11
    Citations
    NaN
    KQI
    []