Bayesian Inverse Problems with $l_1$ Priors: A Randomize-Then-Optimize Approach

2017 
Prior distributions for Bayesian inference that rely on the $l_1$-norm of the parameters are of considerable interest, in part because they promote parameter fields with less regularity than Gaussian priors (e.g., discontinuities and blockiness). These $l_1$-type priors include the total variation (TV) prior and the Besov space $B_{1,1}^s$ prior, and in general yield non-Gaussian posterior distributions. Sampling from these posteriors is challenging, particularly in the inverse problem setting where the parameter space is high-dimensional and the forward problem may be nonlinear. This paper extends the randomize-then-optimize (RTO) method, an optimization-based sampling algorithm developed for Bayesian inverse problems with Gaussian priors, to inverse problems with $l_1$-type priors. We use a variable transformation to convert an $l_1$-type prior to a standard Gaussian prior, such that the posterior distribution of the transformed parameters is amenable to Metropolized sampling via RTO. We demonstrate thi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    18
    Citations
    NaN
    KQI
    []