Improving Performance of Heterogeneous MapReduce Clusters with Adaptive Task Tuning

2017 
Datacenter-scale clusters are evolving toward heterogeneous hardware architectures due to continuous server replacement. Meanwhile, datacenters are commonly shared by many users for quite different uses. It often exhibits significant performance heterogeneity due to multi-tenant interferences. The deployment of MapReduce on such heterogeneous clusters presents significant challenges in achieving good application performance compared to in-house dedicated clusters. As most MapReduce implementations are originally designed for homogeneous environments, heterogeneity can cause significant performance deterioration in job execution despite existing optimizations on task scheduling and load balancing. In this paper, we observe that the homogeneous configuration of tasks on heterogeneous nodes can be an important source of load imbalance and thus cause poor performance. Tasks should be customized with different configurations to match the capabilities of heterogeneous nodes. To this end, we propose a self-adaptive task tuning approach, Ant , that automatically searches the optimal configurations for individual tasks running on different nodes. In a heterogeneous cluster, Ant first divides nodes into a number of homogeneous subclusters based on their hardware configurations. It then treats each subcluster as a homogeneous cluster and independently applies the self-tuning algorithm to them. Ant finally configures tasks with randomly selected configurations and gradually improves tasks configurations by reproducing the configurations from best performing tasks and discarding poor performing configurations. To accelerate task tuning and avoid trapping in local optimum, Ant uses genetic algorithm during adaptive task configuration. Experimental results on a heterogeneous physical cluster with varying hardware capabilities show that Ant improves the average job completion time by 31, 20, and 14 percent compared to stock Hadoop (Stock), customized Hadoop with industry recommendations (Heuristic), and a profiling-based configuration approach (Starfish), respectively. Furthermore, we extend Ant to virtual MapReduce clusters in a multi-tenant private cloud. Specifically, Ant characterizes a virtual node based on two measured performance statistics: I/O rate and CPU steal time. It uses k-means clustering algorithm to classify virtual nodes into configuration groups based on the measured dynamic interference. Experimental results on virtual clusters with varying interferences show that Ant improves the average job completion time by 20, 15, and 11 percent compared to Stock, Heuristic and Starfish, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    64
    Citations
    NaN
    KQI
    []