A Molecular Photoelectrode for Water Oxidation Inspired by Photosystem II

2019 
In artificial photosynthesis, the sun drives water splitting into H2 and O2 or converts CO2 into a useful form of carbon. In most schemes, water oxidation is typically the limiting half-reaction. Here, we introduce a molecular approach to the design of a photoanode that incorporates an electron acceptor, a sensitizer, an electron donor, and a water oxidation catalyst in a single molecular assembly. The strategy mimics the key elements in Photosystem II by initiating light-driven water oxidation with integration of a light absorber, an electron acceptor, an electron donor, and a catalyst in a controlled molecular environment on the surface of a conducting oxide electrode. Visible excitation of the assembly results in the appearance of reductive equivalents at the electrode and oxidative equivalents at a catalyst on the surface that persist for seconds in aqueous solutions. Steady-state illumination of the assembly with 440 nm light with an applied bias results in photoelectrochemical water oxidation with a...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    25
    Citations
    NaN
    KQI
    []