Bayesian model selection for complex geological structures using polynomial chaos proxy

2017 
Different interpretation of sedimentary environments lead to “scenario uncertainty” where the prior reservoir model has a high level of discrete uncertainty. In a real field application, the scenario uncertainty has a considerable effect on flow response uncertainty and makes the uncertainty quantification problem highly nonlinear. We use clustering methods to address the scenario uncertainty. Our approach to cluster analysis is based on the posterior probabilities of models, known as “Bayesian model selection.” Accordingly, we integrate overall possible parameters in each scenario with respect to their corresponding priors to give the measure of how well a model is supported by observations. We propose a cluster-based reduced terms polynomial chaos proxy to efficiently estimate the posterior probability density function under each cluster and calculate the posterior probability of each model. We demonstrate that the convergence rate of the reduced terms polynomial chaos proxy is significantly improved under each cluster comparing to the non-clustered case. We apply the proposed cluster-based polynomial chaos proxy framework to study the plausibility of three training images based on different geological interpretation of the second layer of synthetic Stanford VI reservoir. We demonstrate that the proposed workflow can be efficiently used to calculate the posterior probability of each scenario and also sample from the posterior facies models within each scenario.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    4
    Citations
    NaN
    KQI
    []