МОРФОЛОГИЧЕСКИ НАПРАВЛЕННЫЙ НАНОСКОПИЧЕСКИЙ ПЕРЕНОС ЭНЕРГИИ В ПЛАЗМОННО-ОРГАНИЧЕСКИХ ГИБРИДАХ

2021 
We have experimentally realized a morphology-directed nanoscale energy transfer between an emitter, Eosin yellow dye, and three distinct gold nanoshapes, namely, nanospheres, nanopebbles, and nanoflowers. Raman spectroscopy is employed to ensure mutual interaction among the couple hybrids. The results explicitly show that plasmonic structures with sharp edges produce a strong localized electromagnetic field, which substantially suppresses the background fluorescence signals of the analyte. Further, the relationship between the observed quenching of the dye fluorescence and the geometrical factors of the gold nanoshapes is used to comprehend the influence of energy transfers on their enhanced third-order nonlinearity. The experimental findings reveal a relationship between the efficiency of energy transfers and the enhancement of the observed nonlinear optical coefficients. This study may act as the basis for designing active photonic nanocomposites based on their efficient energy transfer interactions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []