Cooperation of p40phox with p47phox for Nox2-based NADPH Oxidase Activation during Fcγ Receptor (FcγR)-mediated Phagocytosis MECHANISM FOR ACQUISITION OF p40phox PHOSPHATIDYLINOSITOL 3-PHOSPHATE (PI(3)P) BINDING

2011 
During activation of the phagocyte (Nox2-based) NADPH oxidase, the cytoplasmic Phox complex (p47phox-p67phox-p40phox) translocates and associates with the membrane-spanning flavocytochrome b558. It is unclear where (in cytoplasm or on membranes), when (before or after assembly), and how p40phox acquires its PI(3)P-binding capabilities. We demonstrated that in addition to conformational changes induced by H2O2 in the cytoplasm, p40phox acquires PI(3)P-binding through direct or indirect membrane targeting. We also found that p40phox is essential when p47phox is partially phosphorylated during FcγR-mediated oxidase activation; however, p40phox is less critical when p47phox is adequately phosphorylated, using phosphorylation-mimicking mutants in HEK293Nox2/FcγRIIa and RAW264.7p40/p47KD cells. Moreover, PI binding to p47phox is less important when the autoinhibitory PX-PB1 domain interaction in p40phox is disrupted or when p40phox is targeted to membranes. Furthermore, we suggest that high affinity PI(3)P binding of the p40phox PX domain is critical during its accumulation on phagosomes, even when masked by the PB1 domain in the resting state. Thus, in addition to mechanisms for directly acquiring PI(3)P binding in the cytoplasm by H2O2, p40phox can acquire PI(3)P binding on targeted membranes in a p47phox-dependent manner and functions both as a “carrier” of the cytoplasmic Phox complex to phagosomes and an “adaptor” of oxidase assembly on phagosomes in cooperation with p47phox, using positive feedback mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    73
    References
    32
    Citations
    NaN
    KQI
    []