The connection between star formation and supermassive black hole activity in the local Universe

2021 
We present a study of the active galactic nucleus (AGN) activity in the local Universe (z < 0.33) and its correlation with the host galaxy properties, derived from a Sloan Digital Sky Survey (SDSS DR8) sample with spectroscopic star-formation rate (SFR) and stellar mass ($\mathcal{M}_{\ast}$) determination. To quantify the level of AGN activity we used X-ray information from the XMM-Newton Serendipitous Source Catalogue (3XMM DR8). Applying multiwavelength AGN selection criteria (optical BPT-diagrams, X-ray/optical ratio etc) we found that 24% of the detected sources are efficiently-accreting AGN with moderate-to-high X-ray luminosity, which are twice as likely to be hosted by star-forming galaxies than by quiescent ones. The distribution of the specific Black Hole accretion rate (sBHAR, $\lambda_{\mathrm{sBHAR}}$) shows that nuclear activity in local, non-AGN dominated galaxies peaks at very low accretion rates ($-4 \lesssim \log\lambda_{\mathrm{sBHAR}} \lesssim -3$) in all stellar mass ranges. However, we observe systematically larger values of sBHAR for galaxies with active star-formation than for quiescent ones, as well as an increase of the mean $\lambda_{\mathrm{sBHAR}}$ with SFR for both star-forming and quiescent galaxies. These findings confirm the decreased level of AGN activity with cosmic time and are consistent with a scenario where both star-formation and AGN activity are fuelled by a common gas reservoir.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    157
    References
    0
    Citations
    NaN
    KQI
    []