Printed tapered leaky-wave antennas for W-band frequencies

2021 
Despite their great potential in communication and sensing applications, printed leaky-wave antennas have rarely been reported at mm-wave frequencies. In this paper, tapered leaky-wave antennas operating at 80 GHz are designed, fabricated and experimentally characterized. While many continuous leaky-wave antennas use subwavelength strips or other comparably small elements, in this work, the surface impedance is discretized very coarsely using only three square patches per period. With this architecture, a wide range of surface reactance can be achieved while maintaining a minimum feature size of the metallic pattern that is feasible for printed circuit fabrication. Another advantage of this approach over existing works in the mm-wave frequency range is that it allows precise engineering of the aperture illumination. We demonstrate this by applying amplitude tapering for side lobe suppression. A comprehensive experimental study is presented, including near-field and far-field measurements. Therewith, we verify the designed aperture illumination and we reveal the origin of spurious far-field features. Side lobes are effectively suppressed and spurious radiation is reduced to -18 dB compared to the main lobe.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []