Thermodynamically consistent algorithms for models of incompressible multiphase polymer solutions with a variable mobility

2021 
Abstract We present a general strategy for developing structure and property preserving numerical algorithms for thermodynamically consistent models of incompressible multiphase polymer solutions with a variable mobility. We first present a formalism to derive thermodynamically consistent, incompressible, multiphase polymer models. Then, we develop the general strategy, known as the supplementary variable method, to devise thermodynamically consistent numerical approximations to the models. We illustrate the numerical strategy using newly developed models of incompressible diblock copolymer solutions coupled with an electric and a magnetic field, respectively. Mesh refinement is conducted to verify convergence rates of the developed schemes. Some numerical examples are given to exhibit underlying dynamics absent of and driven by the external fields, respectively, highlighting differences between models with the variable and constant mobilities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []