Impact of Silicon Substrate with Low Resistivity on Vertical Leakage Current in AlGaN/GaN HEMTs

2019 
The role of low-resistivity substrate on vertical leakage current (VLC) of AlGaN/GaN-on-Si epitaxial layers has been investigated. AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on both p-type and n-type Si substrates with low resistivity are applied to analyze the vertical leakage mechanisms. The activation energy (Ea) for p-type case is higher than that for n-type at 0–600 V obtained by temperature-dependent current-voltage measurements. An additional depletion region in the region of 0–400 V forms at the AlN/p-Si interface but not for AlN/n-Si. That depletion region leads to a decrease of electron injection and hence effectively reduces the VLC. While in the region of 400–600 V, the electron injection from p-Si substrate increases quickly compared to n-Si substrate, due to the occurrence of impact ionization in the p-Si substrate depletion region. The comparative results indicate that the doping type of low-resistivity substrate plays a key role for VLC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []