Collisional energy transfer in highly excited molecules.

2014 
The excitation/de-excitation step in the Lindemann mechanism is investigated in detail using model development and classical trajectory studies based on a realistic potential energy surface. The model, based on a soft-sphere/line-of-centers approach and using elements of Landau–Teller theory and phase space theory, correctly predicts most aspects of the joint probability distribution P(ΔE,ΔJ) for the collisional excitation and de-excitation process in the argon–allyl system. The classical trajectories both confirm the validity of the model and provide insight into the energy transfer. The potential employed was based on a previously available ab initio intramolecular potential for the allyl fit to 97418 allyl electronic energies and an intermolecular potential fit to 286 Ar–allyl energies. Intramolecular energies were calculated at the CCSD(T)/AVTZ level of theory, while intermolecular energies were calculated at the MP2/AVTZ level of theory. Trajectories were calculated for each of four starting allyl is...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    16
    Citations
    NaN
    KQI
    []