Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 10 6

2017 
Gallium arsenide and related compound semiconductors lie at the heart of optoelectronics and integrated laser technologies. Shaped at the micro- and nanoscale, they allow strong interaction with quantum dots and quantum wells, and promise stunning optically active devices. However, gallium arsenide optical structures presently exhibit lower performance than their passive counterparts based on silicon, notably in nanophotonics, where the surface plays a chief role. Here, we report on advanced surface control of miniature gallium arsenide optical resonators using two distinct techniques that produce permanent results. One extends the lifetime of free carriers and enhances luminescence, while the other strongly reduces surface absorption and enables ultra-low optical dissipation devices. With such surface control, the quality factor of wavelength-sized optical disk resonators is observed to rise up to 6×106 at the telecom wavelength, greatly surpassing previous realizations and opening new prospects for gallium arsenide nanophotonics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    80
    Citations
    NaN
    KQI
    []