Optimizing the design of a silicon photomultiplier-based radiation detector

2011 
Abstract The silicon photomultiplier (SiPM) is a novel photo-sensor technology. This paper presents the design optimization process for implementing this technology in a scintillator-based radiation detector. The device provides the advantages of low current consumption, small dimensions, and high gain. These properties make SiPM of great interest for applications involving portable instrumentation. However, a novel approach to establish a set of parameters and their limits is required to optimize the performance of this new technology in radiation detection applications. The trade-offs and the influences of factors such as the photon detection efficiency (PDE), dynamic range (DR), various scintillation crystal characteristics, and light-reflecting materials are discussed. This study investigates the incorporation of CsI(Tl) scintillation crystals with SiPMs based on measurements and results for different photo-coupling configurations, and the obtained achievements are described. A method for evaluating the photon collection efficiency of scintillator-SiPM-based detectors is proposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    5
    Citations
    NaN
    KQI
    []