Geochemistry and Origin of Scheelites from the Xiaoyao Tungsten Skarn Deposit in the Jiangnan Tungsten Belt, SE China

2020 
The type, association, variations, and valence states of several metal elements of scheelite can trace the source and evolution of the ore-forming fluids. There are four types of scheelite from the Xiaoyao deposit: (1) scheelite intergrown with garnet in the proximal zone (Sch1a) and with pyroxene in the distal zone (Sch1b), (2) scheelite replaced Sch1a (Sch2a) and crystallized as rims around Sch1b (Sch2b), (3) quartz vein scheelite with oscillatory zoning (Sch3), and 4) scheelite (Sch4) within micro-fractures of Sch3. Substitutions involving Mo and Cd are of particular relevance, and both elements are redox-sensitive and oxidized Sch1a, Sch2b, Sch3 are Mo and Cd enriched, relatively reduced Sch1b, Sch2a, Sch4 are depleted Mo and Cd. Sch1a, Sch2a, Sch3, and Sch4 are characterized by a typical right-inclined rare earth element (REE) pattern, inherited from ore-related granodiorite and modified by the precipitation of skarn minerals. Sch1b and Sch2b are characterized by low light rare earth element/heavy rare earth element (LREE/HREE) ratios, influenced by a shift in fO2 during fluid-rock alteration. Sch1b, Sch2b and Sch3 have higher Sr contents than those of Sch1a and Sch2a, reveal that host-rock alteration and fluid–rock interaction have elevated Sr contents. The Y/Ho ratios of scheelite gradually increase from skarn to quartz vein stages, due to fluid fractionation caused by fluid–rock interaction. Thus, the variation in REE and trace elements in scheelite in time and space reflects a complex magmatic-hydrothermal process involving various fluid–rock interactions and fluid mixing.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []