Sub-Micrometer Zeolite Films on Gold-Coated Silicon Wafers with Single-Crystal-Like Dielectric Constant and Elastic Modulus

2017 
A low-temperature synthesis coupled with mild activation produces zeolite films exhibiting low dielectric constant (low-k) matching the theoretically predicted and experimentally measured values for single crystals. This synthesis and activation method allows for the fabrication of a device consisting of a b-oriented film of the pure-silica zeolite MFI (silicalite-1) supported on a gold-coated silicon wafer. The zeolite seeds are assembled by a manual assembly process and subjected to optimized secondary growth conditions that do not cause corrosion of the gold underlayer, while strongly promoting in-plane growth. The traditional calcination process is replaced with a nonthermal photochemical activation to ensure preservation of an intact gold layer. The dielectric constant (k), obtained through measurement of electrical capacitance in a metal–insulator–metal configuration, highlights the ultralow k ≈ 1.7 of the synthetized films, which is among the lowest values reported for an MFI film. There is large improvement in elastic modulus of the film (E ≈ 54 GPa) over previous reports, potentially allowing for integration into silicon wafer processing technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    9
    Citations
    NaN
    KQI
    []