Structural Similarities between Hematoidin Crystals and Asteroid Bodies: Evidence of Lipid Composition

2001 
Abstract Hematoidin crystals (HC) are found in tissues where extravasated erythrocytes undergo degradation. Previous studies have determined that hematoidin is composed, in part, of a bilirubin-like pigment. In a previous study (Papadimitriou and Drachenberg, Ultrastruct. Pathol. 16, 413–421, 1992), we demonstrated that giant cell asteroid bodies (AB) are formed by membrane lipid bilayers. We evaluated three cases in which HC developed within splenic infarcts. The crystals were analyzed by light microscopy (LM), electron microscopy (EM), and X-ray microanalysis. A case of sarcoidosis with multiple epithelioid granulomas containing AB was studied for comparison. By LM the HC demonstrated intense, golden-color, fine threads, both intracellularly and extracellularly, in small and large clusters, and in radiating, star-shape patterns ranging in size from 2 to 200 μm. By EM the HC were composed of a core of empty clefts, consistent with dissolved lipids, suggestive of cholesterol crystals, and were surrounded by myelinoid membrane aggregates. The AB showed by LM significant morphological similarities with the intracellular HC. By EM, the AB were composed of a core of dense phospholipid bilayer tubes surrounded by a halo of myelinoid membranes. No accumulation of specific elements was found in either HC or AB by X-ray microanalysis. HC and AB show a similar star-shape morphology by both LM and EM. We postulate that this shape is due to the physicochemical properties of the accumulated lipids which originate from superfluous cell membranes created during cell fusion in the case of AB and after cellular (predominantly red cell) breakdown in the case of HC. The golden color of the HC likely results from adsorption of hydrophobic bilirubin-like pigments left over from erythrocyte breakdown into the accumulated lipids. Thus, this study shows two different (patho)physiological processes that lead to a markedly similar morphological end-product and provides further support to our proposed mechanism for AB formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    14
    Citations
    NaN
    KQI
    []