Understanding the role of mass transport in tuning the hydrogen evolution kinetics on gold in alkaline media.

2021 
In this work, we present an in-depth study of the role of mass transport conditions in tuning the hydrogen evolution kinetics on gold by means of rotation rate control. Interestingly, we find that the hydrogen evolution reaction (HER) activity decreases with the increasing rotation rate of the electrode. As we increase the rotation (mass transport) rate, the locally generated hydroxyl ions (2H2O +2e− → H2 + 2OH−) are transported away from the electrode surface at an accelerated rate. This results in decreasing local pH and, because of the need to satisfy local electroneutrality, decreasing near-surface cation concentration. This decrease in the near-surface cation concentration results in the suppression of HER. This is because the cations near the surface play a central role in stabilizing the transition state for the rate determining Volmer step (*H–OHδ−–cat+). Furthermore, we present a detailed analytical model that qualitatively captures the observed mass transport dependence of HER solely based on the principle of electroneutrality. Finally, we also correlate the cation identity dependence of HER on gold (Li+ < Na+ < K+) to the changes in the effective concentration of the cations in the double layer with the changes in their solvation energy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    1
    Citations
    NaN
    KQI
    []