AU Mic b is the Youngest Planet to have a Spin-Orbit Alignment Measurement

2020 
We report measurements of the sky-projected spin-orbit angle for AU\,Mic\,b, a Neptune-size planet orbiting a very young ($\sim20$\,Myr) nearby pre-main sequence M dwarf star which also hosts a bright, edge-on, debris disk. The planet was recently discovered from preliminary analysis of radial velocity observations and confirmed to be transiting its host star from photometric data from the NASA's \textit{TESS} mission. We obtained radial velocity measurements of AU\,Mic over the course of two partially observable transits and one full transit of planet b from high-resolution spectroscopic observations made with the {\textsc{Minerva}}-Australis telescope array. Only a marginal detection of the Rossiter--McLaughlin effect signal was obtained from the radial velocities, in part due to AU Mic being an extremely active star and the lack of full transit coverage plus sufficient out-of-transit baseline. As such, a precise determination of the obliquity for AU\,Mic\,b is not possible in this study and we find a sky-projected spin-orbit angle of $\lambda = 47{^{+26}_{-54}}^{\circ}$. This result is consistent with both the planet's orbit being aligned or highly misaligned with the spin-axis of its host star. Our measurement independently agrees with, but is far less precise than observations carried out on other instruments around the same time that measure a low obliquity orbit for the planet. AU\,Mic is the youngest exoplanetary system for which the projected spin-orbit angle has been measured, making it a key data point in the study of the formation and migration of exoplanets -- particularly given that the system is also host to a bright debris disk.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    13
    Citations
    NaN
    KQI
    []