On the Robustness of Multi-View Rotation Averaging.

2021 
Rotation averaging is a synchronization process on single or multiple rotation groups, and is a fundamental problem in many computer vision tasks such as multi-view structure from motion (SfM). Specifically, rotation averaging involves the recovery of an underlying pose-graph consistency from pairwise relative camera poses. Specifically, given pairwise motion in rotation groups, especially 3-dimensional rotation groups (\eg, $\mathbb{SO}(3)$), one is interested in recovering the original signal of multiple rotations with respect to a fixed frame. In this paper, we propose a robust framework to solve multiple rotation averaging problem, especially in the cases that a significant amount of noisy measurements are present. By introducing the $\epsilon$-cycle consistency term into the solver, we enable the robust initialization scheme to be implemented into the IRLS solver. Instead of conducting the costly edge removal, we implicitly constrain the negative effect of erroneous measurements by weight reducing, such that IRLS failures caused by poor initialization can be effectively avoided. Experiment results demonstrate that our proposed approach outperforms state of the arts on various benchmarks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []