Synthesis, self-assembly and anticancer drug encapsulation and delivery properties of cyclodextrin-based giant amphiphiles

2021 
Abstract Cyclodextrin-calixarene giant amphiphiles that can self-assemble into nanospheres or nanovesicles have the ability to encapsulate the anticancer hydrophobic drugs docetaxel, temozolomide and combretastatin A-4 with encapsulation efficiencies >80% and deliver them to tumoral cells, enhancing their therapeutic efficacy by 1-3 orders of magnitude. These amphiphiles were modified by inserting a disulfide bridge confering them redox responsiveness. Disassembly of the resulting nanocompounds and cargo release was favored by high glutathione levels mimicking those present in the tumor microenvironment. Anticancer drug-loaded nanoformulations inhibited prostate, breast, glioblastoma, colon or cervix cancer cell lines proliferation with IC50 values markedly below those observed for the free drugs. Cell-cycle analysis indicated a similar mechanism of action for drug-loaded nanocompounds and free drugs. The results strongly suggest that the cyclodextrin-calixarene heterodimer prototype is an excellent scaffold for nanoformulations aimed to deliver anticancer drugs with limited bioavailability due to low solubility to tumoral cells, markedly increasing their effectivity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    5
    Citations
    NaN
    KQI
    []