Highly Selective Electrochemical Reduction of CO2 to Alcohols on FeP Nanoarray

2019 
Electrochemical reduction of CO2 into various chemicals and fuels provides an attractive pathway for environmental and energy sustainability. It is now shown that a FeP nanoarray on Ti mesh (FeP NA/TM) acts as an efficient 3D catalyst electrode for the CO2 reduction reaction to convert CO2 into alcohols with high selectivity. In 0.5 m KHCO3 , such FeP NA/TM is capable of achieving a high Faradaic efficiency (FE CH 3 OH ) up to 80.2 %, with a total FE CH 3 OH + C 2 H 5 OH of 94.3 % at -0.20 V vs. reversible hydrogen electrode. Density functional theory calculations reveal that the FeP(211) surface significantly promotes the adsorption and reduction of CO2 toward CH3 OH owing to the synergistic effect of two adjacent Fe atoms, and the potential-determining step is the hydrogenation process of *CO.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    61
    Citations
    NaN
    KQI
    []