Low-temperature synthesis of nitrogen doped carbon nanotubes as promising catalyst support for methanol oxidation

2019 
Abstract The electrochemical methanol oxidation reaction (MOR) is of paramount importance for direct methanol fuel cell (DMFC) application, where efficient catalysts are required to facilitate the complicated multiple charge transfer process. The catalyst support not only determines the dispersion status of the catalysts particles, but also exerts great influence on the electronic structure of the catalysts, thereby altering its intrinsic activity. Herein, we demonstrated that nitrogen atoms, assisted by the pre-treatment of carbon matrix with oxidants, can be easily doped into carbon nanotubes at low temperature. The obtained nitrogen-doped carbon nanotubes can effectively improve the dispersion of the supported platinum nanoparticles and facilitate the MOR by modifying the electronic structure of platinum atoms, through catalyst-support interaction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    11
    Citations
    NaN
    KQI
    []