US particulate matter air quality improves except in wildfire-prone areas

2018 
Using data from rural monitoring sites across the contiguous United States, we evaluated fine particulate matter (PM 2.5 ) trends for 1988–2016. We calculate trends in the policy-relevant 98th quantile of PM 2.5 using Quantile Regression. We use Kriging and Gaussian Geostatistical Simulations to interpolate trends between observed data points. Overall, we found positive trends in 98th quantile PM 2.5 at sites within the Northwest United States (average 0.21 ± 0.12 µg·m −3 ·y −1 ; ±95% confidence interval). This was in contrast with sites throughout the rest of country, which showed a negative trend in 98th quantile PM 2.5 , likely due to reductions in anthropogenic emissions (average −0.66 ± 0.10 µg·m −3 ·y −1 ). The positive trend in 98th quantile PM 2.5 is due to wildfire activity and was supported by positive trends in total carbon and no trend in sulfate across the Northwest. We also evaluated daily moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth (AOD) for 2002–2017 throughout the United States to compare with ground-based trends. For both Interagency Monitoring of Protected Visual Environments (IMPROVE) PM 2.5 and MODIS AOD datasets, we found positive 98th quantile trends in the Northwest (1.77 ± 0.68% and 2.12 ± 0.81% per year, respectively) through 2016. The trend in Northwest AOD is even greater if data for the high-fire year of 2017 are included. These results indicate a decrease in PM 2.5 over most of the country but a positive trend in the 98th quantile PM 2.5 across the Northwest due to wildfires.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    107
    Citations
    NaN
    KQI
    []