Vision Transformer Architecture Search

2021 
Recently, transformers have shown great superiority in solving computer vision tasks by modeling images as a sequence of manually-split patches with self-attention mechanism. However, current architectures of vision transformers (ViTs) are simply inherited from natural language processing (NLP) tasks and have not been sufficiently investigated and optimized. In this paper, we make a further step by examining the intrinsic structure of transformers for vision tasks and propose an architecture search method, dubbed ViTAS, to search for the optimal architecture with similar hardware budgets. Concretely, we design a new effective yet efficient weight sharing paradigm for ViTs, such that architectures with different token embedding, sequence size, number of heads, width, and depth can be derived from a single super-transformer. Moreover, to cater for the variance of distinct architectures, we introduce \textit{private} class token and self-attention maps in the super-transformer. In addition, to adapt the searching for different budgets, we propose to search the sampling probability of identity operation. Experimental results show that our ViTAS attains excellent results compared to existing pure transformer architectures. For example, with $1.3$G FLOPs budget, our searched architecture achieves $74.7\%$ top-$1$ accuracy on ImageNet and is $2.5\%$ superior than the current baseline ViT architecture. Code is available at \url{this https URL}.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []