Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils

2017 
Abstract In this paper, a novel three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite (3D-IL@mGO) was prepared, and used as an effective adsorbent for the magnetic dispersive solid phase extraction (MSPE) of 16 polycyclic aromatic hydrocarbons (PAHs) in vegetable oil prior to gas chromatography-mass spectrometry (GC–MS). The properties of 3D-IL@mGO were characterized by scanning electron micrographs (SEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). The 3D-IL@mGO, functionalized by ionic liquid, exhibited high adsorption toward PAHs. Compared to molecularly imprinted solid phase extraction (MISPE), the MSPE method based on 3D-IL@mGO had less solvent consumption and low cost, and was more efficent to light PAHs in quantitative analysis. Furthermore, the rapid and accurate GC–MS method coupled with 3D-IL@mGO MSPE procedure was successfully applied for the analysis of 16 PAHs in eleven vegetable oil samples from supermarket in Zhejiang Province. The results showed that the concentrations of BaP in 3 out of 11 samples were higher than the legal limit (2.0 μg/kg, Commission Regulation 835/2011a), the sum of 8 heavy PAHs (BaA, CHR, BbF, BkF, BaP, IcP, DaA, BgP) in 11 samples was between 3.03 μg/kg and 229.5 μg/kg. Validation results on linearity, specificity, accuracy, precision and stability, as well as on application to the analysis of PAHs in oil samples demonstrated the applicability to food safety risk monitoring in China.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    53
    Citations
    NaN
    KQI
    []